Manipulation of slow radioactive ions by trapping

Gas-filled RFQ: principle Penning trap: principle

What can we do with these devices?

Cooling and bunching (RFQ and PT) Isobar separation (PT) Yield or cross section measurements Trap-assisted spectroscopy in-trap decay post-trap decay spectroscopy

Direct mass measurements Optical pumping (RFQ) Isomer separation (PT)

Thanks to many colleagues at IGISOL group + K. Blaum, G. Bollen, J. Kluge,

Ion Manipulation in Spectroscopy of Exotic Nuclei

STORAGE DEVICES FOR RADIOACTIVE BEAMS

PENNING (PAUL) TRAP

0 0.5 1 cm

particles: at nearly rest in space

STORAGE RING

See for a nice review article: K. Blaum, Phys. Rep. 425 (2006) 1

Storage rings and Penning traps for high-accuracy measurements worldwide

K. Blaum / Physics Reports 425 (2006) 1-78

Resonance frequency measurement – the time of flight technique

- M. König et al, Int. J. Mass. Spec Ion Proc. 142 (1995) 95

Injection of ions into a Penning trap?

Solution: buffer-gas filled RFQ trap

Combination of buffer gas cooling and RF-confinement

- To reduce the emittance and the energy spread
- Optional bunching the DC-beam

Ion beam cooler: RF confinement

Mathieu parameter

$$q = \frac{4 \text{ Q } V_{\text{RF}}}{\text{m } r_0^2 \Omega_{\text{RF}}^2}$$

Ion motion is stable when 0 < q < 0.91

Cooling and bunching of low-energy RIBs Nucl. Instr. Meth. A469, Issue 2

A linear radiofrequency ion trap for accumulation, bunching, and emittance improvement of radioactive ion beams

ISOLTRAP

F. Herfurth^{a,*}, J. Dilling^a, A. Kellerbauer^{a,b}, G. Bollen^c, S. Henry^d, H.-J. Kluge^a, E. Lamour^a, D. Lunney^d, R.B. Moore^e, C. Scheidenberger^a, S. Schwarz^{a,b}, G. Sikler^a, J. Szerypo^f

JYFLTRAP

Beam cooler for low-energy radioactive ions

A. Nieminen^{a,*}, J. Huikari^a, A. Jokinen^a, J. Äystö^{a,1}, P. Campbell^b, E.C.A. Cochrane^{c,2}

Buffer gas cooling of ion beams

McGill at Montreal

A. Kellerbauer*, T. Kim, R.B. Moore, P. Varfalvy

Huge impact on: - sensitivity in collinear laser spectrocopy (x 10⁵)

- optical pumping applications
- fast/efficient injection into Penning traps

NSCL-MSU

[18] G. Bollen, D. Davies, M. Facina, et al., Phys. Rev. Lett. 96, 152501 (2006).

JYFLTRAP-facility

Penning trap purification cycle

... are dipole excited first...

Mass selective quadrupole excitation ...

Finally, out of the trap they go

Cartoon by T. Eronen and H. Penttilä

Selection of the good ones: eye of a needle

Example: A= 115 mass scan

Purification cycle: 110 ms Mass Resolving Power ~ 30000

Independent fission yields

Easy as 1-2-3:

All primary isotopes directly from reaction

Isotopes of all produced elements

Yield disrtibution related to the independent fission cross sections

But:

Chemical effects: ion guide (and trap!) efficiency NOT same for all elements

Measured: **relative** isotope yield dirstibutions for each element

Mass cross sections needed for absolute independent cross sections

Quadrupole frequency (mass selective centering)

Comparison to existing data

Data on proton induced fission in these projectile energies sparse!

Most reasonable data set from 1972 B.L.Tracy et al, Phys Rev C 5, 222

Also based on directly counting ions

Agreement between data depends pretty much which error you apply on the data points

Post-trap spectroscopy

Isotopically and isomerically pure sources

Decay spectroscopy on mass-purified samples of exotic nuclei

J. Rissanen et al. (2006)

The first decay study of ¹¹⁵Ru

In-trap spectroscopy

In-trap conversion electron spectroscopy

L. Weissman^{a,*}, F. Ames^{a,b}, J. Äysto^{a,c}, O. Forstner^a, K. Reisinger^{a,b}, S. Rinta-Antila^d

JYFLTRAP in conversion electron spectroscopy

Fit with the second sec

Canberra RD EB 10GC-500P Thickness 500 μ m Active area 10 mm² (r = 1.78 mm) Dead layer 250 Å PA 1201 Pre amp Resolution less than 1 keV for 59.5 Xray ²⁴¹Am

J. Rissanen Diploma thesis 2005

In-trap spectroscopy; commissioning run for ^{117m}Pd

W. Urban et al., EPJA 22 (2004) 157

- ✓ ²³⁸U(p,f) @ 25 MeV
- ✓ 10 mm² Si-detector @ B=0.7 T
- ✓ Excellent lineshape
- ✓ Efficient collection of electrons
- ✓ Background-free spectra
- ✓ Extends to very low energies
- ✓ No X-rays !
- ✓ Applicable to rather short-lived states

Online Results: ^{117m}Pd and ^{118m2}In

J. Rissanen et al. to be published